Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract In wildfire-prone coastal Santa Barbara, California, downslope winds observed on the southern slopes of the east-west oriented Santa Ynez Mountains are known as Sundowner winds (or Sundowners). One important feature of Sundowners is the remarkable spatial and temporal variability in lee slope jet characteristics. Besides the intensity of the flow approaching the mountain range, the acceleration of the lee slope jet can be influenced by reflected gravity waves associated with one or more of the following mechanisms: a self-induced critical level, an inversion close to mountaintop, and the presence of a mean-state critical level (MSCL). The relative contribution of these mechanisms to the enhancement of Sundowners is yet unknown. This study uses 32-yr simulations (hourly, 1-km grid spacing) complemented with observations collected during the Sundowner Winds Experiment (SWEX) to better quantify the relative contribution of these mechanisms and to quantify the importance of MSCLs. We show that when an MSCL is present below 5 km, less atmospheric forcing is necessary to attain similar lee-slope jet strengths compared to when MSCLs are absent or above 5 km. This was evidenced from simulations and verified with observations. Although MSCLs during Sundowners occur year-round, their relative frequency increases in summer, when temperatures are high and fuels are dry, enhancing wildfire risk. Properly identifying these processes contributes to improved understanding and predictability of Sundowners and many other hazardous downslope windstorms in coastal environments.more » « lessFree, publicly-accessible full text available December 27, 2025
- 
            Abstract New particle formation (NPF) is a complex atmospheric phenomenon defined by the gas‐to‐particle conversion that leads to the sudden burst and growth in aerosol particles. Although chemical mechanisms for aerosol nucleation and growth are well established, the role of physical processes, such as turbulent mixing, within the atmospheric boundary layer (ABL) is beginning to emerge with recent studies. This study, based on the observations from the 2022 CFACT (Cold Fog Amongst Complex Terrain) field study in the Heber Valley of northern Utah, demonstrates an interconnection between turbulence and the occurrence of NPF. Using a spatially distributed boundary layer instrumentation, a novel feature of CFACT, three case studies depict unique boundary layer conditions that modulate the development of NPF characterized by sustained turbulence and weak intermittent turbulence. Quantitative analysis using in situ measurements and derived variables demonstrate that periods of weak intermittent turbulence hinder particle growth, whereas sustained turbulence helps modulate NPF. These findings provide new insights into the physical drivers of NPF, underscoring the role of turbulence in impacting particle formation with the ABL.more » « less
- 
            Current modeling practices for environmental and sociological modulated infectious diseases remain inadequate to forecast the risk of outbreak(s) in human populations, partly due to a lack of integration of disciplinary knowledge, limited availability of disease surveillance datasets, and overreliance on compartmental epidemiological modeling methods. Harvesting data knowledge from virus transmission (aerosols) and detection (wastewater) of SARS-CoV-2, a heuristic score-based environmental predictive intelligence system was developed that calculates the risk of COVID-19 in the human population. Seasonal validation of the algorithm was uniquely associated with wastewater surveillance of the virus, providing a lead time of 7–14 days before a county-level outbreak. Using county-scale disease prevalence data from the United States, the algorithm could predict COVID-19 risk with an overall accuracy ranging between 81% and 98%. Similarly, using wastewater surveillance data from Illinois and Maryland, the SARS-CoV-2 detection rate was greater than 80% for 75% of the locations during the same time the risk was predicted to be high. Results suggest the importance of a holistic approach across disciplinary boundaries that can potentially allow anticipatory decision-making policies of saving lives and maximizing the use of available capacity and resources.more » « less
- 
            Abstract Amidst numerous global crises, decision‐makers have recognized the critical need for fact‐based advice, driving unprecedented data collection. However, a significant gap persists between data availability and knowledge generation, primarily due to time and resource constraints. To bridge this gap, we propose involving a novel group of citizen scientists: volunteer code developers.Utilizing the modular, open‐source analysis platform MoveApps, we were able to engage 12 volunteer coders in a challenge to create tools for movement ecology, aimed at animal conservation. These volunteers developed functioning applications capable of analysing animal tracking data to identify stationary behaviour, estimate ranges and movement corridors and assess human–wildlife conflicts using data sets from human infrastructure, such as OpenStreetMap.Engaging citizen scientists in developing code has surfaced three primary challenges: (i) Community Building—attracting the right participants; (ii) Community Involvement—maintaining quality standards and directing tasks effectively; and (iii) Community Retention—ensuring long‐term engagement. We explore strategies to overcome these challenges and share lessons learnt from our coding challenge experience. Our approaches include engaging the community through their own preferred channels, providing an accessible open‐source tool, defining specific use cases in detail, ensuring quality through feedback, fostering self‐organized community exchanges and prominently illustrating the impact of contributions.We also advocate for other disciplines to consider leveraging volunteer involvement, alongside artificial intelligence, for data analysis and generating state‐of‐the‐art, fact‐based insight to address critical issues such as the global decline in biodiversity.more » « lessFree, publicly-accessible full text available August 1, 2026
- 
            Abstract Stable boundary layers are still a relatively problematic component of atmospheric modeling, despite their frequent occurrence. While general agreement exists that Monin-Obukhov similarity is not applicable in the stable boundary layer (SBL) due to the non-homogeneous, non-stationary flow, no universal organizing theory for the surface SBL has been presented. The SAVANT (Stable Atmospheric Variability ANd Transport) field campaign took place in the fall of 2018 to explore under what conditions shallow drainage flow is generated. The campaign took place in an agricultural setting and covered the period of both pre- and post-harvest, allowing for not only a basic exploration of the boundary layer but a robust data set for applied agricultural understanding of aerosol dispersion, and impacts of changes in surface cover on drainage flows. This article provides a description of the field campaign. Examples of publicly available data products are presented, as well as examples of shallow drainage flow and corresponding lidar measurements of dispersion. Additionally, the field campaign was used to provide educational opportunities for students from several disciplines and the outcomes of these joint educational ventures are discussed as models for future collaborations.more » « less
- 
            Abstract Coastal Santa Barbara is among the most exposed communities to wildfire hazards in Southern California. Downslope, dry, and gusty windstorms are frequently observed on the south-facing slopes of the Santa Ynez Mountains that separate the Pacific Ocean from the Santa Ynez valley. These winds, known as “Sundowners,” peak after sunset and are strong throughout the night and early morning. The Sundowner Winds Experiment (SWEX) was a field campaign funded by the National Science Foundation that took place in Santa Barbara, California, between 1 April and 15 May 2022. It was a collaborative effort of 10 institutions to advance understanding and predictability of Sundowners, while providing rich datasets for developing new theories of downslope windstorms in coastal environments with similar geographic and climatic characteristics. Sundowner spatiotemporal characteristics are controlled by complex interactions among atmospheric processes occurring upstream (Santa Ynez valley), and downstream due to the influence of a cool and stable marine boundary layer. SWEX was designed to enhance spatial measurements to resolve local circulations and vertical structure from the surface to the midtroposphere and from the Santa Barbara Channel to the Santa Ynez valley. This article discusses how SWEX brought cutting-edge science and the strengths of multiple ground-based and mobile instrument platforms to bear on this important problem. Among them are flux towers, mobile and stationary lidars, wind profilers, ceilometers, radiosondes, and an aircraft equipped with three lidars and a dropsonde system. The unique features observed during SWEX using this network of sophisticated instruments are discussed here.more » « less
- 
            Abstract The hydrostatic equilibrium addresses the approximate balance between the positive force of the vertical pressure gradient and the negative gravity force and has been widely assumed for atmospheric applications. The hydrostatic imbalance of the mean atmospheric state for the acceleration of vertical motions in the vertical momentum balance is investigated using tower, the global positioning system radiosonde, and Doppler lidar and radar observations throughout the diurnally varying atmospheric boundary layer (ABL) under clear-sky conditions. Because of the negligibly small mean vertical velocity, the acceleration of vertical motions is dominated by vertical variations of vertical turbulent velocity variances. The imbalance is found to be mainly due to the vertical turbulent transport of changing air density as a result of thermal expansion/contraction in response to air temperature changes following surface temperature changes. In contrast, any pressure change associated with air temperature changes is small, and the positive vertical pressure-gradient force is strongly influenced by its background value. The vertical variation of the turbulent velocity variance from its vertical increase in the lower convective boundary layer (CBL) to its vertical decrease in the upper CBL is observed to be associated with the sign change of the imbalance from positive to negative due to the vertical decrease of the positive vertical pressure-gradient force and the relative increase of the negative gravity force as a result of the decreasing upward transport of the low-density air. The imbalance is reduced significantly at night but does not steadily approach zero. Understanding the development of hydrostatic imbalance has important implications for understanding large-scale atmosphere, especially for cloud development. Significance StatementIt is well known that the hydrostatic imbalance between the positive pressure-gradient force due to the vertical decrease of atmospheric pressure and the negative gravity forces in the vertical momentum balance equation has important impacts on the vertical acceleration of atmospheric vertical motions. Vertical motions for mass, momentum, and energy transfers contribute significantly to changing atmospheric dynamics and thermodynamics. This study investigates the often-assumed hydrostatic equilibrium and investigate how the hydrostatic imbalance is developed using field observations in the atmospheric boundary layer under clear-sky conditions. The results reveal that hydrostatic imbalance can develop from the large-eddy turbulent transfer of changing air density in response to the surface diabatic heating/cooling. The overwhelming turbulence in response to large-scale thermal forcing and mechanical work of the vast Earth surface contributes to the hydrostatic imbalance on large spatial and temporal scales in numerical weather forecast and climate models.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available